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Introduction

® Missing energy signals are important channels for
new physics searches (e.g., SUSY-like theories
containing a WIMP dark matter particle). They
appear in Higgs search channels (with neutrinos).

® The full kinematics is difficult to reconstruct on
an event-by-event basis with more than one
missing particles in an event.

® Many kinematic variables and techniques have
been developed to handle collider signals with
missing eneragy.



Introduction

® Early kinematic variables are often heuristic and
empirical (Mes, Hr, ...). Recently, many variables
based on more theoretically sound footings were

discovered (M12,v/3,,,i,, s+--)-

® | will not go over all these variables or
techniques, but just discuss the basic ideas behind
them so that one can find a uniform
understanding of them and look for new ones

which are useful.



Kinematic boundaries

® A basic idea is to find the minimum (or maximum)
mass or energy which is consistent with a given
event for a hypothesized event topology, using all
(or most relevant) kinematic constraints (mass-
shell, missing transverse momentum).

® |t has natural generalizations to higher-dim
parameter space. One can find the region
consistent with a given event. The true model
parameters lie on the boundary (end point) of the
intersected region of all signal events.



Examples

® [ransverse mass Mr: . /
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Examples

® |nvariant mass of visible particles a decay chain

Hinchliffe et al, hep-ph/96 10544, and many others Example: the dilepton edge.
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Kinematic constraint on the
combination of mass parameters.: V2, = WY = )
, , , , Edge at M), = 2 Vi 1
(m>~<2 B m[)(mf B mf&l) > m2 Point 1
2 = 1Ty 80 T AR REERERERE _

[

I
o
o

It defines a boundary between the
allowed and the forbidden regions
INn the 3-dim mass space.
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The end point of the invariant mass
distribution provides one relation OB e ™
among 3 unknown masses. F E. Paige, hep-ph/9609373



Examples

® Stransverse mass Mty: (Lester & Summers, hep-ph/9906349)
The original definition:

> Trial N mass, UN (1) (2)
- Consider all partitions of P = Py’ + Py -

Mra(pun) = o min max{Mr(1,a; un), Mr(2,b; i) }]
+Pr 7

It’s a function of the missing particle mass .

The end point of M2 distribution gives the correct

mother particle mass my for the true pn.



Examples

® Mm can be understood as minimal kinematic

constraints: (HC & Z. Han, arXiv:0810.5178) o A

- Minimal kinematic constraints:
mass shell constraints of the L | R >
decaying mother particles and h
the missing particles + missing Py = Dy = [
transverse momentum (p1 +pa)® = (P2 + ) = 11,
constraint. pi +ps =P, pi +py =P,

>3'_ 240_—

- Mrz(pn) of a single event is the 3
boundary of the allowed and ook
the forbidden regions in the 2- =
dim mass space based onthe =
minimal kinematic constraints
of that event. CTE e e e e "
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Examples

® Floridav/s, ;. : (KonarP et al, arXiv:0812.1042,1006.0653)

- Minimum center-of-mass parton-level

energy consistent with total measured
energy and visible momentum.
812 (Miny) = VB — P2+ \ B2 + M3, et | — [
p(p) _________ -
- A global and fully inclusive variable which can be used
to measure the mass scale of the parent particles
originally produced. ,/————————————— RS
B e )

E, (GeV) E, (GeV)



Applications

® Mass determinations in SUSY-like theories

To determine a system of N unknown masses, we need at
least N independent mass relations

O1(Pivisible) = fi1(ma, ma,---),

. . o — [ ° ° 1+2(a)
02 (pz,V181ble) — f2 (mla ma, )7
Partons N ()
P1 Y (o+p)
= Y(3+)
N (q)

Example: M2 Kink (Cho, et al, arXiv:0709.0288,
0711.4526; Barr, et al 0711.4008) Vg S+40)
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Applications

® Higgs searches

o /L)L — WW(*) s Vvl (Barnetal,arXiv:1108.3468)

m7 : Smallest Higgs mass £ o16F star = 130
: : > 0.16F ~--my, = 160
which can be consistent 3o 200
. . c 012
with a given event by g o1 ww B
requiring one W on-shell. = cst
The end point is the true  °2- T
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Degenerate constraint equations

® T[he constraint equations restrict the allowed
phase space in some hyper-surface in the space of

all visible and invisible momenta.

® Boundaries or end points arise
when it’s projected to the
subspace of visible momenta.

invisible momenta

phase space

@

. end points

observable space

® The boundaries are often where signal events
accumulate and hence useful for searches.The
events at or near the boundaries are also most
important for mass measurements.



Degenerate constraint equations

® Alternative point of view: boundary events make
the (tangent of) constraint equations degenerate.
Existence of solutions implies certain relations
among coefficients which depends on the masses.

® End points occur because some constraint
equations are quadratic (mass-shell). It has been
shown that the invariant mass and Mr; end points
can be understood in this way. (Kim, .-W.arXiv:0910.1149)
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Degenerate constraint equations

® However, not all degeneracies occur at the end
points. There may be more special events to use
beyond those at the end points.

® We will study an example in which the degeneracy
occurs between linear equations. It allows us to do
the mass measurement for a topology which was
not possible before.



A single short decay chain
HC and Jiayin Gu, to appear

® Ve consider the mass measurement for the
following decay chain at a hadron collider.

Y X N

There is at least another missing particle in the
event, so the transverse momentum of N is
unknown.



Motivations
Appears in many models with WIMP dark matter.

Most recent studies focus on symmetric decay
chains, but there may be much more asymmetric-
chain events than symmetric ones.

Mass measurements were only done for long
decay chains for single decay chains.

Allanach, B.C. et al, Gjelsten, B. K. et al,
Miller, D. et al, ...

M Kawagoe, K. et al, ...

It’s a subprocess of many more complicated
events.




Invariant mass end point

® 2 visible particles, only one invariant mass can be
formed.

T of events

i ||

00000 100000 150000 200000 250000 300000 2p 1 p2

The end point provides one relation among 3
unknown masses, but cannot determine 3
masses individually.

(m3 = m3)(m% — m3) _ AiAg

2 _ _
(p1 + p2) |maX — m%( — m%(




Constraint equations

Dy = My, 2 L
(py — p2)* = m¥. / /
(Py—pz—p1)2=m?v, Y X N

Taking the differences, we get 2 linear equations,

2pa py = m% — m§< = Ay,

° 2 2
assumin — 2 — 0.
2p1pY—2plp2=m§<—m?VEA1, & P1 = D2

There is another type of special events: when

Ips (pr-pa=0) = —L_ 2
P1 || P2 \P1 P2 = EQ_A2°

We get another relation among 3 masses.



New kinematic variable

® Event distribution in log(ET/ET2) vs. 2p1.p2 space

log(ET1/ET?)
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New kinematic variable

® Taking the ratio of 2 linear equations, we derive

o Ay +2p1p2 o 1 — By cos by
5 AN m 06 1 — By cos by
log Ay +2pipe log 1 + By cos by
Ao | 1 4+ By cos by

lab

)

Y

If the 2nd term is randomly distributed around 0,
then we can fit the distribution with a curve

A1+ 2p1ps
Ao

log

to extract Aj and A, individually. Plus the invariant
mass end point, we can solve for 3 masses.



New kinematic variable

log(Et1/ET?)
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A [GeV?] As[GeV?] | log (A1/Ay) | my[GeV] | mx[GeV] | my[GeV]
true 1.310 x 10° | 3.875 x 10° —1.08 707 465 292
reconstructed | 1.370 x 10° | 3.838 x 10° —1.03 780 473 295
error +4.6% —0.96% +5.5% +0.34% | +1.8% +1.0%

for 10% parton-level events

It works well for a wide varieties of models and
spectra at the parton level.



Comments

® When the mother particle Y is polarized, it
creates a bias.

® If A; (or A)) too small, the pr cut may induce a
fake polarization. The width effect may also cause
a bias.

® Many issues in a real experiment:
- Selecting signals from backgrounds.
- Experimental smearing.

- Combinatorial problems.



Combinatorial problems

® Between the 2 visible particles on the decay chain:

Only [log(ETi/ET2)| can be measured.The
distribution is folded along the log(Et//E12)=0 axis. It
causes difficulties if the center of the distribution is
close to that axis.

® Between a visible particle on the decay chain and
another particle somewhere else:

ISR jet affects the distribution at small invariant
masses. Particles from the other decay chain affect
large invariant mass region. We can still fit the

middle region to estimate A and A».



Conclusions

® Many kinematic techniques and variables have
been developed for new physics signals with
missing energies. They are useful for both
searches and mass measurements.

® Now there are uniform ways to understand the
physical meaning of these variables and to search
for new variables and techniques.

® Once the masses of new particles are measured,
they can be used to reconstruct the kinematics
of the new physics events, which will allow more
detailed measurements of other properties such
as spins and couplings.



